

HZB STABILITY LAB VIPERLAB Webinar

Dr. Hans Köbler 26.01.2023

Apply now!

STABILITY ASSESSMENT

Solar Cell

Material

01 High-Throughput Ageing System

3

MAIN FEATURES

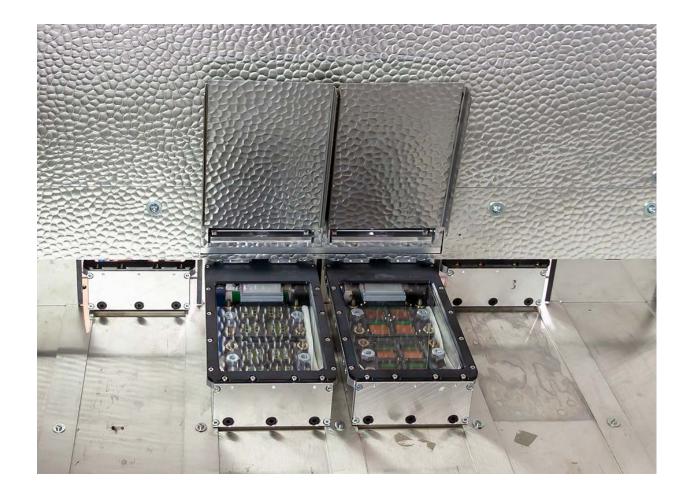
- ageing at MPP
- high-throughput reliable statistics
- atmosphere control
- substrate temperature control


384 pixels of parallel MPP-tracking!

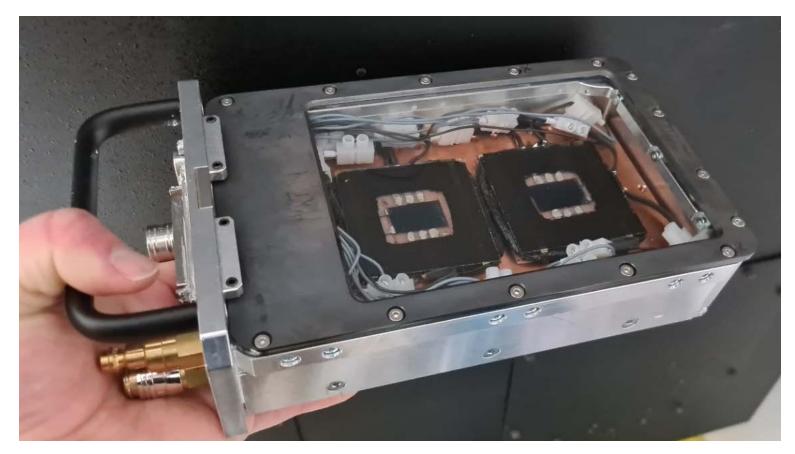
ELECTRONIC AGEING LOAD

- MPPT
- V_{oc}
- J_{sc}
- constant voltage

additionally: sequential JV-scans

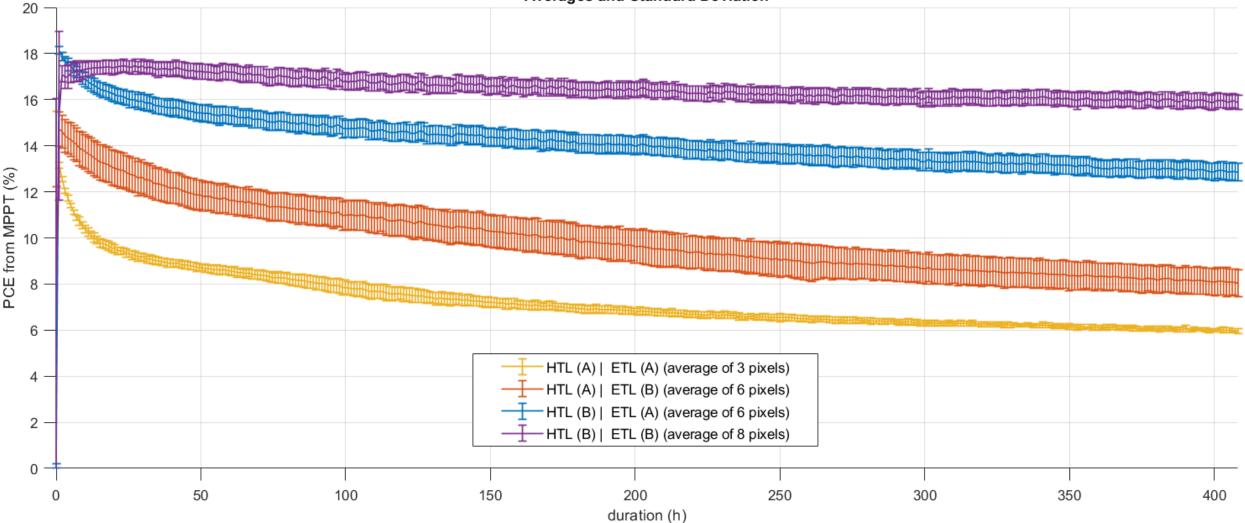


AGEING CONDITIONS


- air, dry air or N₂
- sample temperature: -10 to 85 °C
- temperature cycles
- biasing

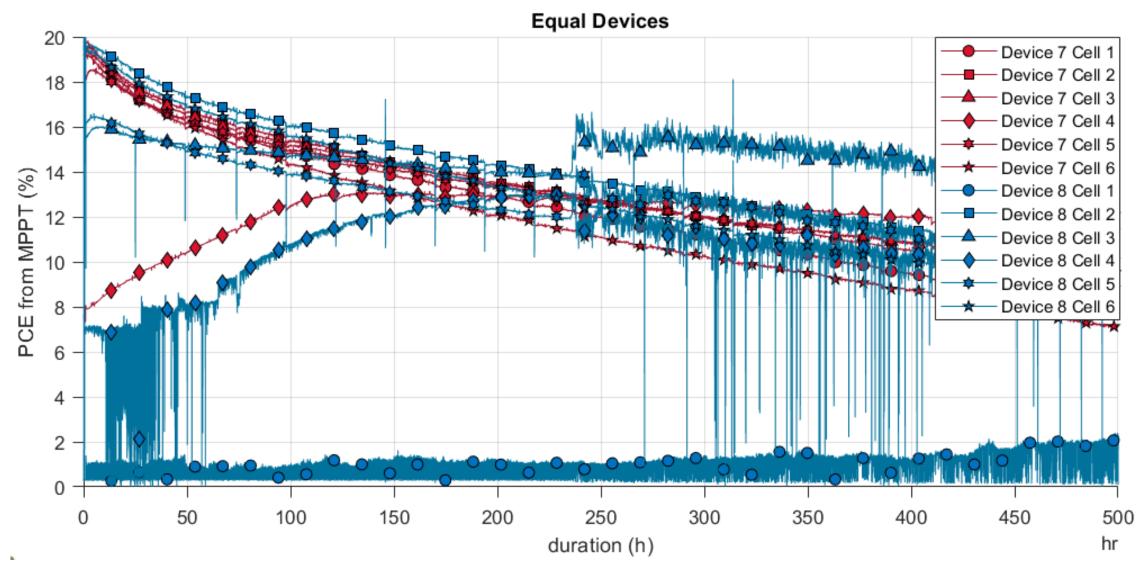
AUTOMATED DARK-LIGHT CYCLING

FLEXIBLE CONTACTING

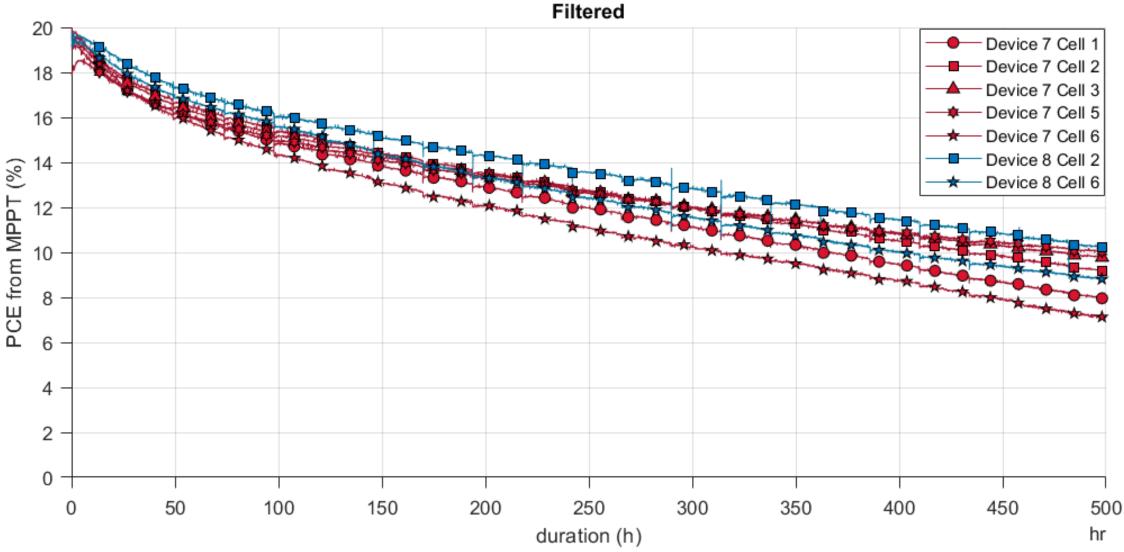


WE CAN ACCEPT ANY LAYOUT!

HIGH-THROUGHPUT AGEING SYSTEM

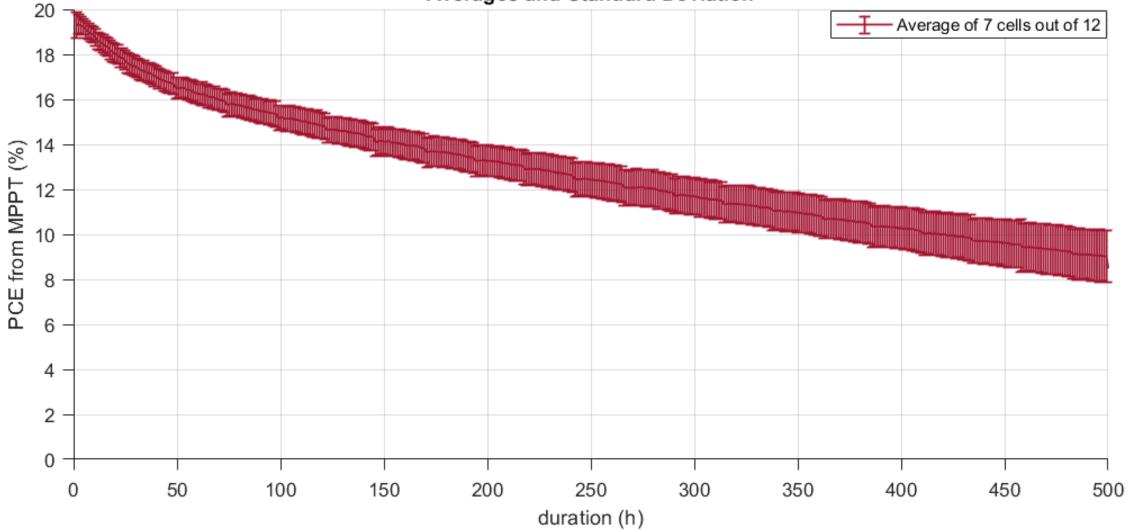

AUTOMATED PLOTTING

Averages and Standard Deviation


Köbler, H. et al. High-Throughput Aging System for Parallel Maximum Power Point Tracking of Perovskite Solar Cells. Energy Technol. 10, 2200234 (2022). 9

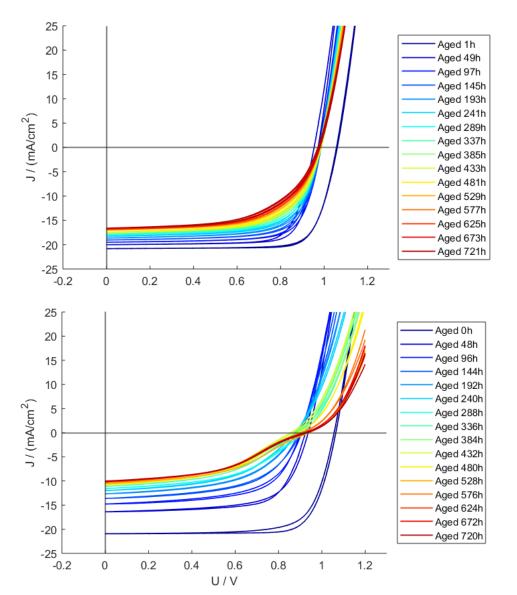
DATA FILTERING

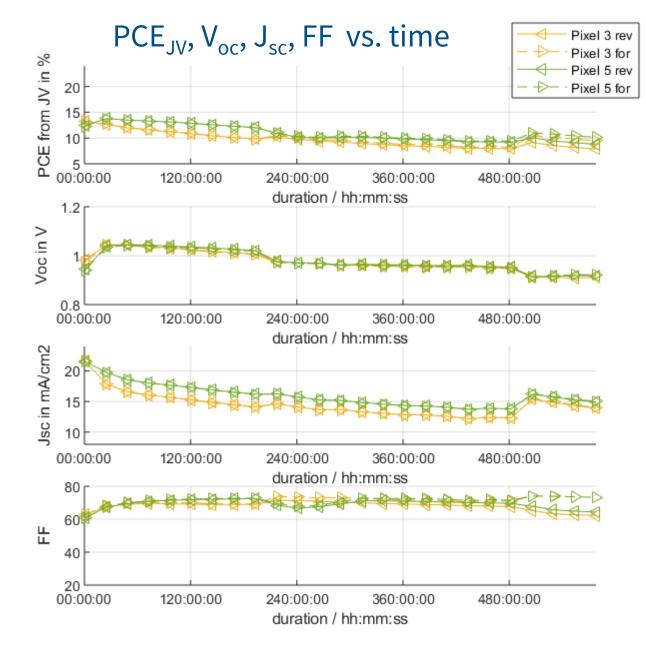
Köbler, H. et al. High-Throughput Aging System for Parallel Maximum Power Point Tracking of Perovskite Solar Cells. Energy Technol. 10, 2200234 (2022). 10


DATA FILTERING

Köbler, H. et al. High-Throughput Aging System for Parallel Maximum Power Point Tracking of Perovskite Solar Cells. Energy Technol. 10, 2200234 (2022).

DATA FILTERING


Averages and Standard Deviation



Köbler, H. et al. High-Throughput Aging System for Parallel Maximum Power Point Tracking of Perovskite Solar Cells. Energy Technol. 10, 2200234 (2022). 12

HIGH-THROUGHPUT AGEING SYSTEM

Stacked JV

Köbler, H. et al. High-Throughput Aging System for Parallel Maximum Power Point Tracking of Perovskite Solar Cells. Energy Technol. 10, 2200234 (2022).

OPEN

Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures

Mark V. Khenkin[®]^{1,2}, Eugene A. Katz[®]^{1,3*}, Antonio Abate⁴, Giorgio Bardizza⁵, Joseph J. Berry[®]⁶, Christoph Brabec^{7,8}, Francesca Brunetti⁹, Vladimir Bulović¹⁰, Quinn Burlingame¹¹, Aldo Di Carlo[®]⁹, Rongrong Cheacharoen¹², Yi-Bing Cheng¹³, Alexander Colsmann[®]¹⁴, Stephane Cros¹⁵, Konrad Domanski[®]¹⁶, Michał Dusza¹⁷, Christopher J. Fell[®]¹⁸, Stephen R. Forrest^{19,20,21}, Yulia Galagan[®]²², Diego Di Girolamo^{9,23}, Michael Grätzel²⁴, Anders Hagfeldt[®]²⁵, Elizabeth von Hauff²⁶, Harald Hoppe²⁷, Jeff Kettle²⁸, Hans Köbler[®]⁴, Marina S. Leite[®]^{29,30}, Shengzhong (Frank) Liu^{31,32}, Yueh-Lin Loo[®]^{11,33}, Joseph M. Luther[®]⁶, Chang-Qi Ma^{® 34}, Morten Madsen^{® 35}, Matthieu Manceau¹⁵, Muriel Matheron[®]¹⁵, Michael McGehee^{® 6,36}, Rico Meitzner²⁷, Mohammad Khaja Nazeeruddin^{® 37}, Ana Flavia Nogueira^{® 38}, Çağla Odabaşı^{® 39}, Anna Osherov¹⁰, Nam-Gyu Park^{® 40}, Matthew O. Reese⁶, Francesca De Rossi^{9,41}, Michael Saliba^{® 42,43}, Ulrich S. Schubert^{© 27,44}, Henry J. Snaith^{® 45}, Samuel D. Stranks^{® 46}, Wolfgang Tress^{® 25}, Pavel A. Troshin^{47,48}, Vida Turkovic³⁵, Sjoerd Veenstra^{® 22}, Iris Visoly-Fisher^{® 1,3}, Aron Walsh^{® 49,50}, Trystan Watson^{® 41}, Haibing Xie⁵¹, Ramazan Yıldırım^{® 39}, Shaik Mohammed Zakeeruddin²⁴, Kai Zhu^{® 6} and Monica Lira-Cantu^{51*}

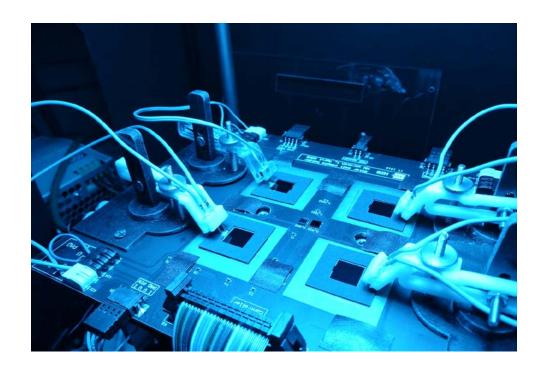
HIGH-THROUGHPUT AGEING SYSTEM

Table 1 | Overview of existing ISOS protocols and suggested additional protocols that account for the properties of perovskite materials and devices

17 OF 34
ISOS-PROTOCOLS
ACCESSED

Test ID	Light source	Temperature	Rel. humidity		Environment/Set-up	Characterization light source	Load	
Dark storage	(ISOS-D)							
ISOS-D-1	None	Ambient (23±4°C)	Ambient	V	Ambient air	Solar simulator or sunlight	OC	
ISOS-D-2	None	65, 85 °C	Ambient	V	Oven, ambient air	Solar simulator	OC	
ISOS-D-3	None	65, 85 °C	85%	V	Env. chamber	Solar simulator	OC	
Bias stability	(ISOS-V)							
ISOS-V-1	None	Ambient (23 <u>+</u> 4 °C)	Ambient	V	Ambient air	Solar simulator	Positive: V _{MPP} ; V _{oc} ;	
ISOS-V-2	None	65, 85 °C	Ambient	V	Oven, ambient air	Solar simulator	E _g /q ; J _{SC}	
ISOS-V-3	None	65, 85 °C	85%	V	Env. chamber	Solar simulator	Negative: -V _{oc} , J _{MPP} ^a	
Light-soakin;	g (ISOS-L)						- 00 ⁻ - MPP	
ISOS-L-1	Solar simulator	Ambient (23±4°C)	Ambient	V	Light only	Solar simulator	MPP or OC	
ISOS-L-2	Solar simulator	65, 85 °C	Ambient	V	Light & temperature	Solar simulator	MPP or OC	
ISOS-L-3	Solar simulator	65, 85 °C	~ 50%	V	Light, temperature & RH	Solar simulator	MPP	
Outdoor sta	bility (ISOS-O)							
ISOS-O-1	Sunlight	Ambient	Ambient	V	Outdoor	Solar simulator	MPP or OC	
ISOS-O-2	Sunlight	Ambient	Ambient		Outdoor	Sunlight	MPP or OC	
ISOS-O-3	Sunlight	Ambient	Ambient	V	Outdoor	Sunlight and Solar simulator	MPP	
Thermal cyc	ling (ISOS-T)							
ISOS-T-1	None	RT to 65, 85 °C	Ambient	V	Hot plate/ oven	Solar simulator	OC	
ISOS-T-2	None	RT to 65, 85 °C	Ambient	V	Oven/env. chamber	Solar simulator	OC	
ISOS-T-3	None	−40 to+85 °C	< 55% ^{b)}		Env. chamber	Solar simulator	OC	
Light cycling	(ISOS-LC)							
ISOS-LC-1	Solar simulator/ Dark Cycle period: 2, 8, or 24 h Duty cycle: 1:1 or 1:2	Ambient (23 <u>+</u> 4 °C)	Ambient	V	Light only	Solar simulator	MPP or OC	
ISOS-LC-2		65, 85 °C	Ambient	\checkmark	Light & temperature	Solar simulator	MPP or OC	
ISOS-LC-3		65, 85 °C	< 50%	V	Light, temperature & RH	Solar simulator	MPP	
Solar-therma	al cycling (ISOS-LT)							
ISOS-LT-1	Solar simulator	Linear or step ramping between room temp. and 65°C	Monitored, uncontrolled		Weathering chamber	Solar simulator	MPP or OC	
ISOS-LT-2	Solar simulator	Linear ramping between 5 °C and 65 °C	Monitored, controlled at 50% beyond 40 °C		Env. chamber with sun simulator	Solar simulator	MPP or OC	
ISOS-LT-3	Solar simulator	Linear ramping between –25 °C and 65 °C	Monitored, controlled at 50% beyond 40 °C		Env. chamber with sun simulator and freezing	Solar simulator	M iff5 r OC	

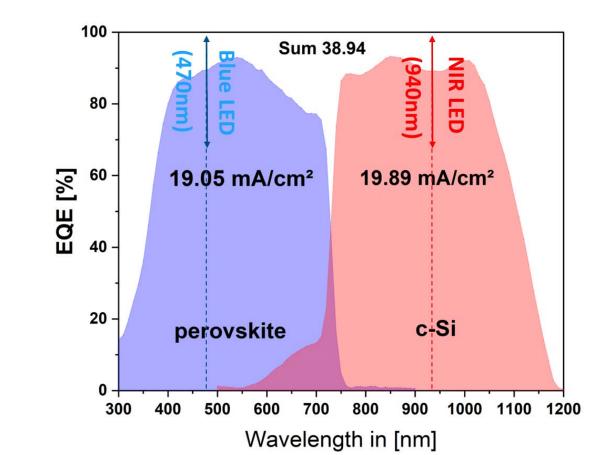
15



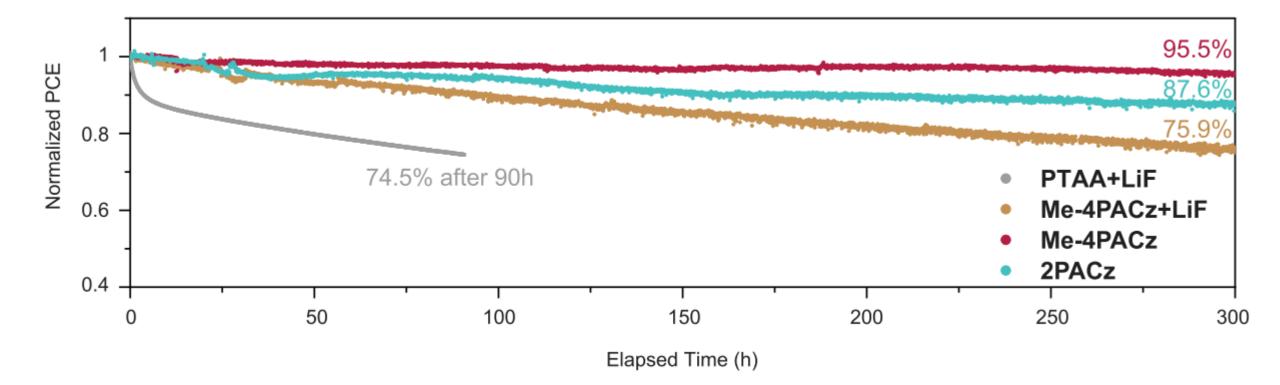
TARIS - FEATURES

Bor Li


- long-term MPP tracking
- up to 20 tandem devices
- illumination area of 7.5cm x 7.5cm
- sample temperature 25-65 °C
- air or N_2



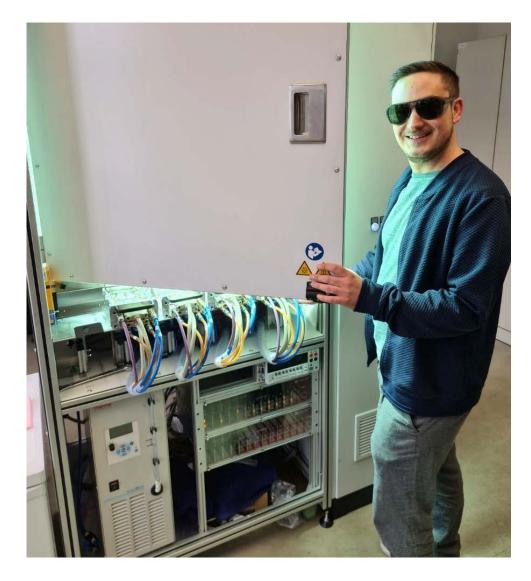
TANDEM STABILITY


TUNEABLE LIGHT SOURCE

- independent tuning of blue and red LED array
- simulate different spectral conditions
- age bottom and top cell independently

TANDEM STABILITY

Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem solar cell with 29% efficiency by enhanced hole extraction. Science (80-.). 370, 1300–1309 (2020).


THANK YOU FOR YOUR ATTENTION!

APPLY FOR ACCESS!

hans.koebler@helmholtz-berlin.de

bor.li@helmholtz-berlin.de