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Methods

= Harmonization to reduce modeling variability and uncertainty:
+ Selection and screening (PRISMA)
* Harmonization (Hsu et al., 2012 NREL LCA Harmonization Project)

= Assess technological variability
* Summary statistics

«  Comparison with reference system, conventional silicon PV modelled before 2010



Methods: harmonization

Life Cycle GHG Emissions for Selected Solar Photovoltaic Electricity Generation Technologies
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Figure 2. Life cycle greenhouse gas emission estimates for selected electricity generation and storage
technologies, and some technologies integrated with carbon capture and storage (CCS).
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Methods: harmonization
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Methods: harmonization
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Methods: harmonization
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Results: studies & LCIA scope
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Results: variability in impact scores (across
technologies)
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Results: variability in impact scores (within
technologies)
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Toxicity impacts in LCA

v' Freshwater ecotoxicity: 6038 chemicals
v Human toxicity (cancer): 1024 chemicals

v" Human toxicity (non-cancer): 3317 chemicals)

The ¥ soumnal of Life Cycle (2022) 27:587-602
hrps:/idoiorg/10.1007/511367-022-02033-0

POLICIES AND SUPPORT IN RELATION TO LCA

Toxicity impacts in the environmental footprint method: calculation
principles
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Abstract

Purpose The EU environmental footprint (EF) is a life cycle assessment (LCA)-based method which aims at assessing the
environmental impacts of products and organisations through 16 midpoint impact categories, among which three address tox-
icity-related impacts. This paper presents the principles underpinning the calculation of the set of characterisation factors (CFs)
for the toxicity-related impact categories in the EF version 3.0: freshwater ecotoxicity (ECOTOX), human toxicity cancer
(HTOX_c) and human toxicity non-cancer (HTOX_nc).

Metheds In order to respond to the issues that emerged during the EF pilot phase, the input data and the caleulation principles
of the USEtox® model were updated. In particular, (i) robustness factors (RFs) were introduced to reduce the dominance
of metals and to balance the lackness of a robust fate ing for zani in USELox®; (i) high-quality
data were selected from databases of EU agencies (European Chemicals Agency and European Food Safety Authority) to
4 the y and the reliability of input data; and (iii) a new approach based on HC,;, (hazard concentration
killing 20'% of the exposed ion) was i to derive ecotoxicity effect factors (EfF).

Results and discussion The new approach increased the number of characterised chemicals in the three impact categorics:
ECOTOX {6038 chemicals, + 140%), HTOX _c (1024 chemicals, + 70 ) and HTOX _nc (3317 chemicals, + 660% ). Moreover,
specific derivation principles were defined for assigning CFs also to relevant groups of chemicals (e.g. polycyclic aromatic
hydrocarbons), and specific strategies were implemented to better align LCA toxicity data with data used for risk assess-
ment purposes.

Conclusions The new set of CFs was calculated to ensure a broader coverage of characterised chemicals and to overcome
some limitations of the USEtox® model identified during the environmental footprint pilot phase.

Keywords Life cycle impact assessment - Risk assessment - Human toxicity - Ecotoxicity - Environmental footprint

1 Introduction

The product and organisation environmental footprint (PEF
and OEF, respectively) is a life cycle assessment-based
method to assess the environmental performance of prod-

ucts and organisations (EC 2013a, b). The development of

the PEF and OEF methods are pant of the Single Market

fior Green Products Initiative that aims to establish a com-
mon and agreed method for assessing the environmental
performance through the life cycle (EC 2013a, b and EC,
2021} and are now under discussion as reference methods
fior the Green Claims Initiative {EC, 2021a) and as method in
support o the chemical strategy for sustainability (EC 2020)
and the zero pollution action plan (EC 202 1b). The PEF and
OEF methods have been developed since 2013 by the Joint

Communicated by Michael Z. Hauschild

[ Serenclla Sala
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Erwan Saouter
saouter.e@gmail.com

Joint Research Centre, European Commission, Ispra, VA,
haly

R h Centre of the C ission (EC-JRC) in
collaboration with DG Envi . involving stakehold
along the process. The methods were adopted by the Euro-
pean Commission in 2013 (EC, 2013b) the Recommendation
2021/9332EU (EC, 2021), on the use of common methods
to measure and icate the life cycle 1
performance of products and organisations.

£) Springer

12



Toxicity data M.1.A.!
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Figure 2. Total publications and the proportion of published papers including global-
change driver terms in the top 20 ecology journals (Table 1) according to the highest total
citations reported in the ecology section of the ISI Web of Science for the period 1970—
2015.

Gessner, M. O. (2017). Synthetic chemicals as agents of global change.
Frontiers in Ecology and the Environment. https://doi.org/10.1002/fee.1450
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(Lack of) spatial & temporal aspects in LCIA

Climate change, ozone depletion: Human toxicity, freshwater ecotoxicity
1 compartment, well-mixed Many (disconnected compartments), not well-mixed
Short transport time, long residence time Long transport time, highly variable residence time

14



Toxicity impacts in LCA

Basic checks:

= Emissions (environmental flows) included in the inventory?

Needs case-study specific emission scenarios including
manufacturing and operation...

> _but also End-of-Life (e.g., incineration and landfilling of
bottom ash, etc.)

= (Characterization factors exist for the substances of
concern?

»  With luck, EF3.0 has it

> Otherwise, the additional data collection and modelling

effort is not trivial and requires considerable expertise
beyond LCA

» ... and this goes for all chemical precursors, it's “life cycle”!
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Uncertainty and variability

CF=FFx XFxEfF

« On data for EfF: "When toxicity data for at least two species were available, the HC20 was directly derived from the
SSD curve (chronic ECT0). However, the fewer data the lower the reliability. In fact, uncertainty is estimated to be of
4 orders of magnitude when only two species are available” (Van Zelm et al. 2007, in Sala et al., 2022).

 On variability in FF: "the Kd values can vary over several orders of magnitude for a given metal as a function of soil
properties...” (Allison & Allison, 2005 in Groenenberg, 2011)

« On overall model uncertainty of USEtox: “..3 orders of magnitude uncertainty on the individual factors (...) means
that contributions of 1%, 5% or 90% to the total toxicity score can be interpreted as essentially equal, but
significantly larger than those of a chemical contributing to less than 1 per thousand or less than 1 per million of the
total score” (Fantke et al., 2017)

16



Takeaways

Toxicity impact categories: handle with care!

> Especially for metals

Best practices I've collected:

v Model operational (yield-related) parameters as best as possible to
capture potential benefits/drawbacks of the technology in the field

v"Include all plausible EOL scenarios, separately: best-case/worst-case,
break-even analysis, etc.

v Combine LCA with chemicals risk assessment, criticality assessment and
social due diligence, LCC.. especially for metals

Always do uncertainty analysis...

v ..and global sensitivity analysis

We need more harmonization, based on sensitivity!

Image: Midjourney Al rendering of “solar” and “probability distribution” keywords 17
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Backup slide: contribution analysis
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In USEtox v2.0 documentation

Inorganics are all specified as ‘indicative’, reflecting the relatively high uncertainty associated with estimates of fate, exposure and
effects for this substance group. In contrast to organic compounds, for which the substance-to-substance variations in transport
properties can be attributable to basic chemical properties such as solubility ratios, variations in transport properties for inorganic
substances depend in complex ways on a range of media properties. The solid/liquid partitioning of inorganic substances in soll
can depend on several mineral components as well as the pH, redox potential (EH) and cation-exchange capacity. As a result,
there can be significant variations of chemical mobility over very small geographic scales. Hence, it is difficult to identify the
appropriate regional "bulk” transport properties for metals, as is done for organic chemicals. In addition, inorganic species are not
‘removed" by chemical reactions in the same way that most organic chemicals are transformed by actions such as
biodegradation, photolysis, and hydrolysis. The biodegradation of an organic chemical in soll, water, or sediment effectively
removes it from the system, but species such as lead, cadmium, and arsenic can only be truly removed from water, soll, or
sediment by advection and tend to persist for very long time periods. However, many inorganic species can be effectively
removed by sequestration in a chemical form that is chemically and biologically unavailable. The magnitude and variability of
this process is often difficult to guantify, but can be very important for both fate and exposure assessment. Finally, relative to
organic chemicals there are large uncertainties in determining how the variations in observed bioaccumulation and bioavailability
come about (in both aquatic and terrestrial food webs). There have not been sufficient experiments to provide the data needed to
address the nature and mechanism of the variations of these processes for inorganic species.
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In USEtox v2.0 documentation

3.3.2 Interpretation and use of USEtox characterization factors

The following recommendations have been published (Rosenbaum et al. 2008) and are reiterated here with some minor updates
and modlifications. The toxicity potentials, i.e. characterization factors, must be used in a way that reflects the large variation of
more than 15 orders of magnitude (i.e. a factor of 1015 between the lowest — least toxic — and the highest — most toxic —
characterization factor) between chemical characterization factors of all substances currently covered in USEtox as well as the 3
orders of magnitude uncertainty (see Rosenbaum et al. 2008) on the individual factors. This means that contributions of 1%, 5%
or 90% to the total toxicity score can be interpreted as essentially equal, but significantly larger than those of a chemical
contributing to less than 1 per thousand or less than 1 per million of the total score. Disregarding the fact that the orders of
magnitude of predicted impacts far outranges the orders of magnitude of the uncertainty analysis has been a major cause of
complaints about the variability of these factors across impact assessment methods, whereas the most important chemicals were
often the same within a factor 1000 across those methods. In practice, this means that for LCA practitioners these toxicity
potentials are very useful to identify the 10 or 20 most important chemicals pertinent for their comparative applications, while
implying a motive to disregard hundreds of other substance emissions whose impacts are by far less significant (and likely of
negligible importance for comparative decisionmaking) for the considered products. Toxicity impact scores thus enable the
identification of all chemicals contributing more than e.g. 1/1000th to the total score. In this context it (s usually more meaningful
and thus recommended to plot and compare toxicity impact scores on logarithmic scales, avoiding the over-interpretation of
small differences of a factor.
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